posic ([personal profile] posic) wrote2010-12-05 05:47 am
Entry tags:

Еще об AT-мотивных пучках

Мотивы Тейта с рациональными коэффициентами варьируются в семействах. Здравый смысл и воспоминания о семинарах, посещавшихся в юности, подсказывают, что должен существовать мотивный пучок над Gm (над любым полем F), слой которого над точкой x ∈ Gm есть расширение Z с помощью Z(1), соответствующее элементу x ∈ ExtF1(Z,Z(1)) = F*.

Например, мотив первых гомологий Gm со склеенными точками 1 и x может быть искомым расширением, и, очевидно, когда x варьируется, это законное семейство многообразий над x ∈ Gm\1, по крайней мере. (Может быть, это неправильный пример. Будем считать его иллюстрацией меры моей необразованности.)

С конечными коэффициентами Z/n, обратный образ этого мотивного пучка при отображении возведения в n-ю степень Gm → Gm предположительно разваливается в прямую сумму Z/n и Z/n(1). Предположительно, это значит, что интересующий нас мотивный пучок есть под- и факторпучок прямого образа Z/n ⊕ Z/n(1) при отображении возведения x в степень n. Хорошо бы выловить этот объект в моей точной категории мотивных пучков Артина-Тейта.

Если этот пример репрезентативен (а на первый взгляд кажется, что он довольно репрезентативен), он может показывать, что всякий мотивный пучок с артин-тейтовскими слоями артин-тейтовский, когда коэффициенты конечны.

Впрочем нет, должен быть еще другой класс примеров, когда все слои одинаковы, но есть монодромия. Но с конечными коэффициентами монодромия должна быть конечной, так что вывод предположительно тот же самый -- в алгебраическом накрытии вариация тривиализуется. Так?

Post a comment in response:

(will be screened)
(will be screened if not on Access List)
(will be screened if not on Access List)
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

If you are unable to use this captcha for any reason, please contact us by email at support@dreamwidth.org