posic ([personal profile] posic) wrote2010-11-21 09:55 pm
Entry tags:

Артин-Тейтовские мотивные пучки с конечными коэффициентами

Итак, что все-таки теперь утверждается.

Пусть X -- гладкое многообразие над полем F, а m -- простое число, не делящееся на характеристику F. Рассмотрим точную категорию E_X фильтрованных этальных пучков Z/m-модулей над X, присоединенные факторы которых обладают тем свойством, что их слои над схемными точками X суть перестановочные представления групп Галуа полей вычетов этих схемных точек над Z/m, подкрученные на циклотомические этальные пучки в соответствующих тензорных степенях.

Точные тройки в E_X суть последовательности из трех фильтрованных пучков и двух морфизмов между ними, с нулевой композицией, присоединенные факторы которых суть точные тройки этальных пучков над X, расщепимые над каждой схемной точкой X.

На точных категориях E_X действуют точные функторы обратного образа по отношению к произвольным морфизмам гладких многообразий над F и прямого образа с компактным носителем по отношению к квазиконечным морфизмам. Прямые образы с компактным носителем (= продолжения нулем) при замкнутых вложениях и этальных морфизмах сопряжены к обратным образам с положенных (разных) сторон.

В частности, прямой образ с компактным носителем постоянного пучка Z/m с квазиконечного морфизма гладких многообразий Y → X -- это некоторый объект точной категории E_X, сосредоточенный целиком в компоненте фильтрации 0. Кажется, его естественно считать "относительным мотивом когомологий с компактным носителем Y над X".

Чтобы определить относительные мотивы гомологий, нужно сначала понять, что это такое, на уровне (этальных) пучков. Пусть имеется морфизм Y → X; что есть пучок послойных гомологий Y над X? Кажется, естественным кандидатом в такие пучки выглядит пучок на X, двойственный по Вердье к прямому образу постоянного пучка с Y. Или, что то же самое, прямой образ с компактным носителем дуализирующего пучка на Y. Если Y гладко, это отличается от прямого образа с компактным носителем постоянного пучка только гомологическим сдвигом и тейтовской подкруткой.

Если это правильно, то относительные мотивы гомологий Y над X отличаются от определенных выше относительных мотивов когомологий с компактным носителем только гомологическим сдвигом и тейтовской подкруткой на размерность Y. Может быть, лучше использовать относительную размерность Y над X (если X фиксировано).

Подкреплена эта интерпретация пока что в основном наброском вычисления групп Ext в точной категории E_X между тейтовскими мотивами (очевидным образом рассматриваемыми как объекты E_X). Если подумать, то это не так уж мало, хотя и не в каком понятном смысле не достаточно.

Ext из тейтовского мотива, продолженного нулем с этального морфизма, в тейтовский мотив, можно тогда посчитать по сопряженности. То же и Ext из тейтовского мотива в тейтовский мотив, продолженный нулем с замкнутого вложения. Далее, Ext из тейтовского мотива, продолженного нулем с замкнутого вложения, можно посчитать, разложив такой мотив в точный треугольник, включающий продолжение нулем с открытого дополнения. Аналогично для Ext в продолжение нулем с открытого вложения. Наконец, Ext в прямой образ тейтовского мотива при конечном этальном морфизме можно посчитать, пользуясь тензорной структурой и (частично определенной) двойственностью на E_X.

Но вот как считать Ext в продолжение нулем тейтовского мотива с этального морфизма или из прямого образа тейтовского мотива при конечном этальном морфизме на замкнутое подмногообразие, остается непонятным.

В то же время, мы знаем, что ограниченная производная категория E_X порождена тейтовскими подкрутками мотивов многообразий, конечных и этальных над локально замкнутыми подмногообразиями X (см. предыдущий постинг).