Entry tags:
Математико-психологическое
Важнейшими результатами абстрактной теории категорий являются общие теоремы существования представляющих объектов и, соответственно, сопряженных функторов. Совсем другие, но аналогичные теоремы существования имеются в абстрактной теории триангулированных категорий.
Теорию категорий я люблю. Неконструктивными процедурами, сильно повышающими мощность множеств, охотно пользуюсь, например, в контексте построения инъективных резольвент модулей над произвольными кольцами. Почему же меня так смущают и пугают эти теоремы существования функторов, особенно в применении к конкретным интересующим меня категориям?
К этому можно добавить, что теорема Гротендика о существовании инъективных объектов, основанная на трансфинитной индукции, смущает почему-то гораздо сильнее, чем явные конструкции инъективных объектов, использующие бесконечные произведения. Вообще все теоретико-категорные вопросы, упирающиеся в различие между множеством и классом, сильно огорчают почему-то.
Видимо, это психологический порог, связанный с уровнями абстракции. Объекты и морфизмы хочется рассматривать произвольные, категории и функторы -- конкретно заданные.
Теорию категорий я люблю. Неконструктивными процедурами, сильно повышающими мощность множеств, охотно пользуюсь, например, в контексте построения инъективных резольвент модулей над произвольными кольцами. Почему же меня так смущают и пугают эти теоремы существования функторов, особенно в применении к конкретным интересующим меня категориям?
К этому можно добавить, что теорема Гротендика о существовании инъективных объектов, основанная на трансфинитной индукции, смущает почему-то гораздо сильнее, чем явные конструкции инъективных объектов, использующие бесконечные произведения. Вообще все теоретико-категорные вопросы, упирающиеся в различие между множеством и классом, сильно огорчают почему-то.
Видимо, это психологический порог, связанный с уровнями абстракции. Объекты и морфизмы хочется рассматривать произвольные, категории и функторы -- конкретно заданные.
no subject
no subject
no subject
А есть какой-нибудь обзор теоретико-множественных трудостей теории категорий? Например, когда они реально мешают построить локализацию (обратить некоторые морфизмы)?
no subject
no subject
Вы не могли бы поделиться ссылками? Мне интересно.
no subject
Ссылки:
1. Alonso Tarrío, Leovigildo; Jeremías López, Ana; Souto Salorio, María José. Localization in categories of complexes and unbounded resolutions. Canad. J. Math. 52 (2000), no. 2, 225--247.
2. http://arxiv.org/abs/0806.1324
no subject
Спасибо за ссылки.
(с запозданием)
Re: (с запозданием)
no subject
no subject