posic ([personal profile] posic) wrote2017-06-15 11:09 pm
Entry tags:

Quasi-coherent sheaves and contraherent cosheaves

According to Enochs-Estrada, quasi-coherent sheaves on a scheme are representations of a certain quiver with relations (otherwise known as additive functors from a fixed preadditive category into abelian groups, or modules over a big ring) satisfying the additional "quasi-coherence" condition.

What is this quasi-coherence condition? What is its place among the general concepts of homological algebra known to the contemporary algebraists? It is the condition of left Ext^{0,1}-perpendicularity to a certain set of objects of injective dimension 1, as in the paper of Geigle and Lenzing. The quasi-coherent sheaves are the left perpendicular class to a set of objects of injective dimension 1 in the category of modules over a big ring.

According to yours truly, contraherent cosheaves on a scheme are representations of a certain quiver with relations ( = modules over a certain big ring) satisfying the additional "contraherence" and "contraadjustness" conditions. What are these contraherence and contraadjustness conditions?

These are the conditions of right perpendicularity to a certain set of objects of projective dimension 2. The contraherent cosheaves are the right Ext^{0,1,2}-perpendicular class to a set of objects of projective dimension 2 in the category of modules over a big ring.

That is why the quasi-coherent sheaves are an abelian category, while the contraherent cosheaves are an exact category. The left/right perpendicular class to a set/class of objects of injective/projective dimension 1 in an abelian category is an abelian category (as Geigle and Lenzing already observed), while the Ext^*-perpendicular class to a set/class of objects of homological dimension more than 1 in an abelian category is an exact category (since it is a full subcategory closed under extensions).

Post a comment in response:

(will be screened)
(will be screened if not on Access List)
(will be screened if not on Access List)
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

If you are unable to use this captcha for any reason, please contact us by email at support@dreamwidth.org