http://posic.livejournal.com/ ([identity profile] posic.livejournal.com) wrote in [personal profile] posic 2015-07-08 10:05 am (UTC)

Это другая наука, некоммутативная теория мотивов. То, о чем пишет Гонсало Табуада и др. Ведь структуры Ходжа бывают на когомологиях алгебраических многообразий, что обобщается до некоммутативных алгебраических многообразий.

То же, о чем речь выше -- это некоммутативный аналог Com-Lie двойственности Квиллена, только сформулированный в максимальной общности в смысле нильпотентной фундаментальной группы (для каковой максимальной общности нужно с кольцом когомологий и кокольцом/коалгеброй Ли двойственных пространств к гомотопическим группам иметь дело). Никаких "топологических пространств", отдельных от "некоммутативных гомотопических типов", там нет, и тем более непонятно, что играло бы роль "многообразий".

У Табуады DG-алгебры и у меня DG-алгебры, это запутывает. Но у Табуады DG-алгебра -- это над которой DG-модули суть когерентные пучки на многообразии, а у меня DG-алгебра -- это которая когомологии своего пространства/гомотопического типа считает.

Post a comment in response:

(will be screened)
(will be screened if not on Access List)
(will be screened if not on Access List)
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

If you are unable to use this captcha for any reason, please contact us by email at support@dreamwidth.org